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Abstract. The numerical solution of optimization problems governed by partial differential
equations (PDEs) with random coefficients is computationally challenging because of the large num-
ber of deterministic PDE solves required at each optimization iteration. This paper introduces an
efficient algorithm for solving such problems based on a combination of adaptive sparse-grid collo-
cation for the discretization of the PDE in the stochastic space and a trust-region framework for
optimization and fidelity management of the stochastic discretization. The overall algorithm adapts
the collocation points based on the progress of the optimization algorithm and the impact of the ran-
dom variables on the solution of the optimization problem. It frequently uses few collocation points
initially and increases the number of collocation points only as necessary, thereby keeping the num-
ber of deterministic PDE solves low while guaranteeing convergence. Currently an error indicator is
used to estimate gradient errors due to adaptive stochastic collocation. The algorithm is applied to
three examples, and the numerical results demonstrate a significant reduction in the total number of
PDE solves required to obtain an optimal solution when compared with a Newton conjugate gradient
algorithm applied to a fixed high-fidelity discretization of the optimization problem.

Key words. PDE optimization, uncertainty, stochastic collocation, trust regions, sparse grids,
adaptivity

AMS subject classifications. 49M15, 65K05, 65N35, 90C15

1. Introduction. Optimization problems governed by partial differential equa-
tions (PDEs) arise in many important science and engineering applications. In most
applications model parameters, such as diffusivity in a heat equation, or rates in re-
action equations are not known exactly and have to be modeled as random variables
or random fields. For the numerical solution of such problems it is important to
include the randomness of the data in the formulation of the optimization problem.
The numerical solution of the resulting optimization problem is expensive, since one
not only needs to discretize the governing PDE in space (and time) but also needs to
approximate the random variables.

In this paper we consider optimization problems governed by elliptic PDEs with
random data and deterministic optimization (control) variables. This formulation of
the optimization problem arises when one must decide on the control action prior to
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observing the outcome. We present a framework for stating the infinite-dimensional
problem, but our main focus is on the efficient numerical solution of the optimization
problem. We introduce and analyze an optimization algorithm based on a combination
of adaptive sparse-grid collocation for the discretization of the PDE in the stochas-
tic space and a trust-region framework for optimizing and managing the fidelity of
the discretization. Our overall algorithm adapts the collocation points based on the
progress of the optimization algorithm and the impact of the random variables on
the solution of the optimization problem. In our numerical examples, our algorithm
uses few collocation points initially and increases the number of collocation points
only as necessary, thereby keeping the number of deterministic PDE solves low while
guaranteeing convergence, provided the error due to adaptive stochastic collocation
can be estimated.

Numerical methods for solving PDEs with random data can be classified as
projection-based methods and sample-based methods. Common projection-based
methods are polynomial chaos and stochastic Galerkin methods [4, 5, 38, 67]; com-
mon sampling methods are Monte Carlo and stochastic collocation [3, 47, 46, 66]. The
algorithm presented in this paper is based on stochastic collocation. This allows us to
exploit the problem structure that arises from sampling methods. Moreover, stochas-
tic collocation is an interpolation-based technique that exhibits faster convergence
than Monte Carlo methods when the random-field solution of the PDE is sufficiently
regular with respect to the random variables [3, 47, 46].

The stochastic collocation discretization scheme with fixed collocation level is an-
alyzed for PDE-constrained optimization problems in [33]. In this paper we adapt the
stochastic collocation. More specifically, we minimize a fixed high-fidelity collocation
approximation of the infinite-dimensional objective function. In each optimization
iteration we use adapted collocation to model the high-fidelity objective function.
The models typically have a significantly smaller number of collocation points. The
trust-region framework [2] is used to specify the model fidelity required at each it-
eration. We use conditions derived from [34] to specify the model fidelity needed to
ensure convergence of the trust-region method to a point that satisfies the first-order
optimality conditions.

To derive models that meet the accuracy requirements specified by our trust-
region method, we use the structure of the collocation discretization, and we employ
sparse grids [58, 25, 48, 49, 6, 64, 14, 50, 51, 52]. Specifically, we use stochastic
collocation built on dimension-adaptive sparse grids [26]. This approximation pro-
vides an error indicator, not an error estimate, which is required by our trust-region
convergence theory. This heuristic approach performs well in our numerical tests.

After discretization, our optimization problem is a particular finite-dimensional
stochastic programming problem. Such problems are discussed, for example, in [57].
Since our optimization problems involve PDEs, their efficient solution requires addi-
tional considerations. The integration of adaptive sparse grids and trust-region meth-
ods is new, as is the application to several PDE constrained problems. We mention
that the authors of [7] combine a trust-region framework and Monte-Carlo sampling
for the solution of a class of stochastic programming problems, the so-called mixed
logit problem.

Optimization problems governed by PDEs with random data are studied in, for
example, [12, 13, 16, 22, 23, 53, 24, 30, 33, 40, 55, 56, 60]. Unlike our case, where
the optimization variable is deterministic, the papers [40, 13, 60] study problems
where the optimization variable is also a random field. This approach impacts the
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structure of the optimization problems. However, it seems possible to extend our
numerical approach to those problems. The papers [55, 56, 16, 24, 53] focus on
specific applications, including aerodynamic design under uncertainty, optimization
of radiated engine noise, optimal control of stochastic heating processes, and optimal
control of turbulence, respectively. It is possible to apply our solution approach to
several of the problems (see also Section 5). The authors of [55, 56, 60] employ
sparse-grid collocation but do not provide a convergence analysis of their approach.
The papers [30, 33] provide a discretization error analysis for stochastic Galerkin and
stochastic collocation approximations, respectively. Our paper integrates adaptive
sparse grids and trust-region methods and provides a convergence analysis, which
is new. We also analyze the application of our method to several PDE-constrained
problems.

Our paper is organized as follows. First, we present a problem formulation for the
class of optimization problems we consider. We state assumptions that guarantee well-
posedness of the optimization problems and allow gradient computations. Section 3
reviews sparse grids and the dimension-adaptive sparse grids of [26]. Most of the
material in this section is known, but it is presented in the context of optimization so
that it can be integrated with our optimization algorithm. In Section 4, we present the
trust-region algorithm and describe how we construct models using adaptive sparse
grids. The presentation of the trust-region method is for more general optimization
problems. We use conditions derived from [34] to specify the model fidelity needed to
ensure convergence of the trust-region method to a point that satisfies the first-order
optimality conditions. In Section 5, we apply our approach to three examples. In
particular, we show how these examples fit into the abstract problem statement of
Section 2, and we illustrate the computational savings achieved by our integration of
adaptive sparse grids and trust-region based optimization.

2. Problem Formulation. Let (Ω,F , P ) denote a complete probability space,
where Ω is the set of outcomes, F is the σ-algebra of events, and P : F → [0, 1] is a
probability measure. Furthermore let V and Z denote real Hilbert spaces. For almost
every ω ∈ Ω, let A(ω) ∈ L(V,V∗), B(ω) ∈ L(Z,V∗), b(ω) ∈ V∗, and N(·, ω) : V →
V∗. We will consider optimization problems governed by the stochastic equation

A(ω)u(ω) + N(u(ω), ω) + B(ω)z + b(ω) = 0 a.e. in Ω. (2.1)

Here u denotes the state variable, and z denotes the control variable. The state u is
a random field, but the control is deterministic. This models the situation where one
must decide on the control action prior to observing the outcome.

To facilitate the numerical solution of (2.1), we will work under the finite noise
assumption; see [3].

Assumption 2.1. There exists a vector of random variables Y : Ω → Γ ⊂ RM
such that A(ω) ≡ A(Y (ω)), B(ω) ≡ B(Y (ω)), b(ω) ≡ b(Y (ω)), and N(·, ω) ≡
N(·, Y (ω)), where the components of Y are independent random variables, Yi : Ω →
Γi ⊂ R, with Lebesgue density ρi : Γ→ R. The image space of Y is Γ =

∏M
i=1 Γi and

the joint density of Y is ρ =
∏M
i=1 ρi.

The finite noise assumption allows the change of variables in which (2.1) is re-
placed by the parameterized system

A(y)u(y) + N(u(y), y) + B(y)z + b(y) = 0 ∀ y ∈ Γ. (2.2)

Our solution space for the state equation is the Bochner space C0
ρ(Γ;V). Given a
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Banach space X , the Bochner spaces used in this paper are

Lqρ(Γ;X ) =

{
u : Γ→ X : u strongly measurable,

∫
Γ

ρ‖u‖qX <∞
}

for q ∈ [1,∞),

C0
ρ(Γ;X ) =

{
u : Γ→ X : u is continuous and sup

y∈Γ
‖ρ(y)u(y)‖X <∞

}
.

The space Lqρ(Γ;X ) and C0
ρ(Γ;X ) are Banach spaces, and L2

ρ(Γ;V) is a Hilbert
space with inner product 〈u, v〉L2

ρ(Γ;V) =
∫

Γ
ρ(y)〈u(y), v(y)〉V dy. Furthermore, if X

is reflexive and if q, q∗ ∈ (1,∞) are conjugate pairs (i.e., 1/q + 1/q∗ = 1), then(
Lqρ(Γ;X )

)∗
= Lq

∗

ρ (Γ;X ∗); see, for example, [18, 69, 70]. As usual, if X = R, we use
the notation Lqρ(Γ) and C0

ρ(Γ) instead of Lqρ(Γ;R) and C0
ρ(Γ;R), respectively. We also

note that C0
1 (Γ;X ) ⊂ Lq1ρ (Γ;X ) ⊂ Lq2ρ (Γ;X ) for all q1 ≥ q2 ≥ 1 and, if Γ is bounded,

C0
ρ(Γ;X ) ⊂ Lqρ(Γ;X ) for all q ∈ [1,∞).

In addition to the finite noise assumption, we will make the following assumption
concerning the solvability of the state equation (2.2).

Assumption 2.2. For every z ∈ Z the state equation (2.2) has a unique solution
u(·; z) ∈ C0

ρ(Γ;V).
To formulate the optimization problem, we let W denote a real Hilbert space,

C ∈ L(V,W), and w̄ ∈ W. We consider an optimization problem whose objective
function includes the term

E
[
‖Cu(·; z)− w̄‖2W

]
=

∫
Γ

ρ(y)‖Cu(y; z)− w̄‖2W dy.

To ensure this objective function is well defined under Assumption 2.2, we require
that C0

ρ(Γ;V) be continuously embedded in L2
ρ(Γ;V).

Assumption 2.3. The inclusion C0
ρ(Γ;V) ⊂ L2

ρ(Γ;V) holds, and there exists a
constant c > 0 such that ‖v‖Lpρ(Γ;V) ≤ c ‖v‖C0

ρ(Γ;V) for all v ∈ C0
ρ(Γ;V).

Given α > 0, we consider the optimization problem

min
z∈Z

J(z)
def
=

1

2
E
[
‖Cu(·; z)− w̄‖2W

]
+
α

2
‖z‖2Z , (2.3)

where u(y; z) ∈ V for all y ∈ Γ solves (2.2). Such optimization problems are considered
in, for example, [12, 56] and in the context of shape optimization in [23]. As we have
mentioned, optimization problems of the form (2.3) arise when one must decide on
the control action prior to observing the outcome. In contrast, papers [11, 13, 60]
consider optimization problems where the control z also is a random field.

In many cases, the infinite-dimensional optimization problem can also be studied
by using the weak form∫

Γ

ρ(y)〈A(y)u(y) + N(u(y), y) + B(y)z + b(y), φ(y)〉V∗,V dy = 0 ∀φ ∈ L2(Γ,V)

and the state space u(·; z) ∈ Lpρ(Γ;V) for suitable p ≥ 2. Since we will apply a
stochastic collocation discretization, we consider (2.2) and require u(·; z) ∈ C0

ρ(Γ;V).
In order to analyze convergence of the stochastic collocation discretization, additional
smoothness of the state solution with respect to the parameters is required [33]. We
can admit objective functions other than the expected value function, provided the
state space is adjusted accordingly [33].
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Theorem 2.4. If Assumption 2.2 is satisfied and if for every sequence {zn} with
zn ⇀ z in Z the corresponding sequence {u(·; zn)} of states satisfies u(·; zn) ⇀ u(·; z)
in L2

ρ(Γ;V), then the optimization problem (2.3) has a solution.
Proof. This existence proof follows using standard arguments. See, for example,

[37, Sec. 1.5.1], [61, Sec. 2.5].
The Fréchet differentiabiity of the objective function (2.3) can be established

under the following condition.
Assumption 2.5. For every y ∈ Γ, the function V 3 u 7→ N(u, y) ∈ V∗ is

Fréchet differentiable and the Fréchet derivative is denoted by N′(u, y). Moreover,
the function Z 3 z 7→ u(·; z) ∈ C0

ρ(Γ;V) is Fréchet differentiable, and the derivative
v = u′(·; z)δz satisfies

A(y)v(y) + N′(u(y), y)v(y) + B(y)δz = 0 ∀ y ∈ Γ. (2.4)

In addition, the adjoint equation

A(y)∗p(y) + N′(u(y), y)∗p(y) = −C∗(Cu(y; z)− w̄) ∀ y ∈ Γ (2.5)

has a unique solution p ∈ C0
ρ(Γ;V).

If Assumptions 2.2, 2.3, and 2.5 hold, the objective function (2.3) is Fréchet
differentiable, and the Fréchet derivative is given by

J ′(z)δz =

∫
Γ

ρ(y)〈v(y),C∗(Cu(z)− w̄)〉V,V∗dy + α〈z, δz〉Z

= −
∫

Γ

ρ(y)〈v(y),A(y)∗p(y) + N′(u(y), y)∗p(y)〉V,V∗ + α〈z, δz〉Z

= −
∫

Γ

ρ(y)〈A(y)v(y) + N′(u(y), y)v(y), p(y)〉V∗,V + α〈z, δz〉Z

=

∫
Γ

ρ(y)〈B(y)δz, p(y)〉V∗,V + α〈z, δz〉Z

=

∫
Γ

ρ(y)〈B(y)∗p(y), δz〉Z + α〈z, δz〉Z .

Thus, the gradient of the objective function J(z) in (2.3) is

∇J(z) = αz +

∫
Γ

ρ(y)B(y)∗p(y) dy = αz + E[B∗p]. (2.6)

Under additional assumptions, we can also compute second derivatives of the
objective function J(z) in (2.3). Moreover, standard first-order necessary optimality
conditions and second-order necessary and sufficient optimality conditions can be
stated. See, for example, [37, Sec. 1.6].

3. Stochastic Collocation. To discretize the optimal control problem (2.2),
(2.3) we use stochastic collocation. For parameterized PDEs, such as (2.2), stochas-
tic collocation has been extensively studied in, for example, [45, 47, 65, 66, 3] and
stochastic collocation has been used in the optimization context in, for example,
[11, 12, 13, 33, 56]. A discretization error analysis of stochastic collocation in the
optimization context is provided in [33]. Stochastic collocation discretizations are
attractive because they lead to decoupled systems of deterministic PDEs, which are
easily parallelizable when implemented on a computer. Moreover, even when colloca-
tion points are chosen adaptively, which is our goal, the discretized objective function
and its derivative are easy to evaluate.
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In this section, we review the sparse-grid collocation method and an approach
for the adaptive choice of collocation points. In the next section, we will integrate
this material with a trust-region method in order to adaptively adjust the number of
collocation points during optimization.

3.1. Stochastic Collocation for PDEs. Let {yk}Qk=1 ⊂ Γ be a finite set of

points in Γ, and let {Pk}Qk=1 ⊂ C0
ρ(Γ) be given polynomials. The stochastic collocation

method approximates the solution u ∈ C0
ρ(Γ;V) of (2.2) as

uQ(y, x) =

Q∑
k=1

uk(x)Pk(y),

where uk ∈ V solves

A(yk)uk + N(uk, yk) + B(yk)z + b(yk) = 0, k = 1, . . . , Q. (3.1)

The choice of {yk}Qk=1 and {Pk}Qk=1 governs the accuracy and efficiency of this algo-

rithm [45, 47, 65, 3]. We will use sparse-grid knots {yk}Qk=1 and sparse-grid polyno-

mials {Pk}Qk=1.

3.2. Stochastic Collocation for Optimization. Stochastic collocation can
be used in different ways in the optimization context. See [33]. We discretize the
objective function as

JQ(z)
def
=

1

2
E
[ Q∑
k=1

Pk‖Cuk(z)− w̄‖2W
]

+
α

2
‖z‖2Z

=
1

2

Q∑
k=1

ωk‖Cuk(z)− w̄‖2W +
α

2
‖z‖2Z , (3.2)

where uk(z) is the solution of (3.1) and ωk = E[Pk] for k = 1, . . . , Q. This approach
results in the semi-discretized optimization problem

min
z∈Z

JQ(z), where uk(z) = uk ∈ V solves (3.1) for k = 1, . . . , Q. (3.3)

We note that for sparse grids, some weights ωk are negative. Such cases require care.
For example, if (2.2) is linear in u, then the original optimization problem (2.3) is
convex quadratic in z. If some weights ωk are negative, then it is not immediately
obvious that the discretized problem (3.2) is convex or even well-posed. This issue
is analyzed in [33] for linear state equations, and it is shown that for sufficiently
fine collocation the discretized problem (3.2) is well-posed and the solution of (3.2)
converges to the solution of original optimization problem (2.3) as the accuracy of the
collocation method is increased.

If for fixed y ∈ Γ the mapping v 7→ N(v, y) is Fréchet differentiable with Fréchet
derivative N′(v, y) (see Assumption 2.5), then the objective function in (3.3) is also
Fréchet differentiable with gradient

∇JQ(z) = αz +

Q∑
k=1

ωkB
∗
kpk, (3.4)
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where pk ∈ V solves the discrete adjoint equations

(A(yk) + N′(uk, yk))∗pk + C∗(Cuk − w̄) = 0, k = 1, . . . , Q. (3.5)

For the collocation discretization (3.2), the discrete adjoint equations (3.5) can be
viewed as the collocation discretization of the adjoint equation (2.5), which is not
necessarily the case for other stochastic collocation discretizations of the optimization
problem; see [33].

3.3. Choice of Collocation Points: Generalized Sparse Grids. The ob-
jective function (2.3) requires integration, which potentially leads to many quadrature
points in order to achieve desired levels of accuracy. This situation motivates our use
of so-called sparse grids to compute the collocation points {yk}Qk=1, the polynomials

{Pk}Qk=1, and the corresponding weights {ωk}Qk=1. The material in this section is
based on previous work by many authors, including [26, 28, 6, 3, 46, 48, 66].

The construction of Smolyak and tensor product rules begins with one-dimensional
quadrature operators. For k = 1, . . . ,M , let {Eik}i≥1 denote a sequence of one-
dimensional quadrature operators such that

Eik[f ]→ Ek[f ] =

∫
Γk

ρk(y)f(y)dy as i→∞

for f ∈ C0
ρk

(Γk) sufficiently regular. We assume the quadrature operator Eik is exact

for polynomials of degree dik−1, where {dik}∞i=1 ⊂ N is an increasing sequence and N i
k

denotes the associated quadrature nodes. The tensor product quadrature rule for the
integration of a function f : Γ → R is (Ei1 ⊗ · · · ⊗ EiM )f . The obvious disadvantage
of this rule is that the number of quadrature nodes grows exponentially.

We define the one-dimensional difference quadrature operators as

∆1
k

def
= E1

k and ∆i
k

def
= Eik − Ei−1

k for i ≥ 2.

Obviously, Eik =
∑i
j=1 ∆j

k; therefore, the tensor product quadrature rule can be
written as (

Ei1 ⊗ · · · ⊗ EiM
)
[f ]. =

∑
max ik≤i

(
∆i1

1 ⊗ · · · ⊗∆iM
M

)
[f ] (3.6)

Since Eik[f ]→ Ek[f ] =
∫

Γk
ρk(y)f(y)dy as i→∞, we have

∆i
kf → 0 as i→∞,

where the rate of convergence depends on the smoothness of f . Therefore, we can
approximate the right hand side in (3.6) by∑

∑
k ik≤i+M−1

(
∆i1

1 ⊗ · · · ⊗∆iM
M

)
[f ]. (3.7)

Equation (3.7) is the Smolyak quadrature operator [58]. The approximation error of
(3.7) is small provided the function f is sufficiently smooth.

The Smolyak operator (3.7) can be generalized. Let i = (i1, . . . , iM ) be a multi-
index and let I ⊂ NM+ be a multi-index set, where N+ = {1, 2, . . .}. The generalized
Smolyak quadrature operator is defined as

EI
def
=
∑
i∈I

∆i1
1 ⊗ · · · ⊗∆iM

M . (3.8)
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For I = {(i1, . . . , iM ) : max ik ≤ i}, (3.8) is the tensor product operator (3.6); and for
I = {(i1, . . . , iM ) :

∑
k ik ≤ i+M − 1}, (3.8) is the (classical) Smolyak quadrature

operator (3.7).
We can write (3.8) in terms of the original one-dimensional quadrature operators

if the index set I is admissible.
Definition 3.1. The multi-index set I ⊂ NM+ is admissible if for all i =

(i1, . . . , iM ) ∈ I the following holds:

j = (j1, . . . , jM ) ∈ NM+ and jk ≤ ik ∀ k = 1, . . . ,M =⇒ j ∈ I.

Let |i|1 =
∑M
k=1 ik, and define the characteristic function χI(j) = 1 if j ∈ I and zero

otherwise. If I is admissible, then we can use the recombination technique [25] to
write (3.8) as

EI =
∑
i∈I

( ∑
j∈{0,1}M

(−1)|j|1χI(i + j)

)(
Ei11 ⊗ · · · ⊗ E

iM
M

)
. (3.9)

Furthermore, by defining

ϑ(i)
def
=
∑

j∈{0,1}M
(−1)|j|1χI(i + j),

we can determine the set of points required to evaluate EI (i.e., the sparse grid
associated with I):

NI
def
=
⋃

{i∈I :ϑ(i)6=0}

(
N i1

1 × · · · × N
iM
M

)
.

Similarly the sparse grid collocation weights can be computed from the weights of the
original one-dimensional quadrature formulas.

In general, the number of points in NI is considerably fewer than the number
of points in the corresponding tensor product grid (unless I corresponds to the full
tensor product rule). The number of points in NI can further be reduced if the
one-dimensional quadrature nodes are nested, that is, N i

k ⊂ N
i+1
k [48].

3.4. Adaptive Selection of Index Sets. We will determine the index set in
(3.9) adaptively using the dimension-adaptive approach presented in [26].

If I is an admissible index set and EI denotes the corresponding generalized
sparse-grid quadrature operator, then the error assocated with EI applied to a func-
tion f is

E[f ]− EI [f ] =
∑
j 6∈I

(∆j1
1 ⊗ · · · ⊗∆jM

M )[f ]. (3.10)

Let N+(I) = {i 6∈ I : I ∪ {i} is admissible} be the set of neighboring indices. The
dimension adaptive approach of [26] approximates (3.10) by

E[f ]− EI [f ] ≈
∑

j∈N+(I)

(∆j1
1 ⊗ · · · ⊗∆jM

M )[f ].

The algorithm proposed in [26] can be applied to vector-valued functions in f ∈
C0
ρ(Γ;Z) if we use a function ℘ : Z → [0,∞) to quantify the size of the contribution
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(∆j1
1 ⊗ · · · ⊗∆jM

M )[f ] (we will use the norm ℘( · ) = ‖ · ‖Z). The dimension-adaptive
sparse grid algorithm [26] for functions in C0

ρ(Γ,Z) is adapted in Algorithm 3.2.

Algorithm 3.2.

Set i = (1, . . . , 1), O = ∅, A = {i}, r = (∆1
1 ⊗ · · · ⊗∆1

M )[f ], η = ηi = ℘(r)
while η > TOL do

Select i ∈ A corresponding to the largest ηi
Set A ← A \ {i} and O ← O ∪ {i}
Update the error indicator η ← η − ηi
for k = 1, . . . ,M do

Set j = i + ek
if O ∪ j is admissible then

Set A ← A∪ {j}
Set rj = (∆j1

1 ⊗ · · · ⊗∆jM
M )[f ]

Set ηj = ℘(rj)
Update the integral approximation r ← r + rj
Update the error indicator η ← η + ηj

end if
end for

end while

4. Trust Regions. The variation of the sparse grid allows us to use models
of different fidelity in the optimization. We use the trust-region framework [2, 21]
to adjust the model fidelity, in our case the sparse-grid collocation points, to the
progress of the optimization algorithm. We first describe the trust-region framework,
including the recent retrospective trust-region algorithm [8], and then we describe
how we compute our models when the optimization problem is given by (2.3), (3.2).

4.1. The Algorithm. Trust-region algorithms for the solution of

min
z∈Z

J(z)

compute steps zk+1 = zk + sk ∈ Z that solve the trust-region subproblem

min
s∈Z

mk(s) subject to ‖s‖Z ≤ ∆k. (4.1)

Here, mk : Z → R is an approximation of J around the point zk, and ∆k > 0 is
the trust-region radius. In general, (4.1) need not be solved exactly. In fact, (4.1)
need not have a solution since the set {s ∈ Z : ‖s‖Z ≤ ∆k} need not be compact for
general Hilbert spaces Z. The requirement on the accuracy of our solution to (4.1) is
known as the fraction of Cauchy decrease condition

mk(0)−mk(sk) ≥ κ0‖∇mk(0)‖Z min
{

∆k,
‖∇mk(0)‖Z

βk

}
, (4.2)

where κ0 ∈ (0, 1) and βk = 1 + sups∈Bk ‖∇
2mk(s)‖L(Z,Z∗). We make the following

assumptions for the retrospective trust-region method. Similar assumptions are made
for the classical trust-region method [21].

Assumptions 4.1.
1. J is twice continuously Fréchet differentiable and bounded below.
2. mk is twice continuously Fréchet differentiable for k = 1, 2, . . .
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3. There exist κ1 > 0, κ2 > 1 such that ‖∇2J(z)‖L(Z,Z∗) ≤ κ1 and
‖∇2mk(z)‖L(Z,Z∗) ≤ κ2 − 1 for all z ∈ Z and for all k = 1, 2, . . .

4. Classical trust-region algorithm: There exists ξ > 0 such that

‖∇mk(0)−∇J(zk)‖Z ≤ ξmin{‖∇mk(0)‖Z ,∆k}. (4.3a)

Retrospective trust-region algorithm: There exists ξ > 0 such that

‖∇mk(0)−∇J(zk)‖Z ≤ ξmin{‖∇mk(0)‖Z ,∆k−1}. (4.3b)

The inexact gradient condition (4.3) is adapted from [34].
Whether to accept zk+1 = zk + sk as the new iterate or keep zk+1 = zk is decided

based on the ratio between actual and predicted reduction

%k =
J(zk)− J(zk + sk)

mk(0)−mk(sk)
.

In the classical trust-region method, the new trust-region radius ∆k is also determined
based on %k. See, for example, [21]. In the retrospective trust-region algorithm of [8]
first a new model mk+1(s) ≈ J((zk + sk) + s) is computed, and then the trust-region
radius ∆k+1 is determined based on the ratio between actual and predicted reduction
with the new model

%̃k+1 =
J(zk)− J(zk + sk)

mk+1(−sk)−mk+1(0)
.

In our case the models mk are determined by (3.2) with a varying, small number of
collocation points. A potential advantage of the retrospective trust-region algorithm
is that if the new model mk+1 is better than mk, the trust region may be increased
faster, thereby allowing larger steps toward the solution. We will demonstrate both
the classical and the retrospective trust-region algorithms in our numerical examples.
We list only the latter.

Algorithm 4.2. - Retrospective Trust-Region Algorithm:
1. Initialization: Given mk, zk, ∆k, 0 < γ1 ≤ γ2 < 1, ∆max > 0, 0 <

η0 < 1, and 0 < η1 < η2 < 1.
2. Step Computation: Approximately solve the trust-region subproblem

min
s∈Z

mk(s) subject to ‖s‖Z ≤ ∆k

for a step sk which satisfies (4.2).
3. Step Acceptance: Compute %k = (J(zk)−J(zk+sk))/(mk(0)−mk(sk)).

if %k ≥ η0 then zk+1 = zk + sk else zk+1 = zk end if
4. Model Update: Choose a new model, mk+1, which satisfies (4.3), i.e.

‖∇mk+1(0)−∇J(zk+1)‖Z ≤ ξmin{‖∇mk+1(0)‖Z ,∆k}.

5. Trust-Region Update:
if zk+1 = zk then ∆k+1 ∈ (0, γ1‖sk‖Z ]
else Compute %̃k+1 = (J(zk)− J(zk+1))/(mk+1(−sk)−mk+1(0)) and

update ∆k+1 by
if %̃k+1 ≤ η1 then ∆k+1 ∈ (0, γ2‖sk‖Z ] end if
if ρ̃k+1 ∈ (η1, η2) then ∆k+1 ∈ [γ2‖sk‖Z ,∆k] end if
if %̃k+1 ≥ η2 then ∆k+1 ∈ [∆k,∆max] end if
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In the classical trust-region algorithm, ∆k is updated based on %k instead of %̃k+1,
and the new model is computed after the trust-region update.

Under Assumptions 4.1, one can prove the first-order convergence of Algorithm 4.2.
This is a slight generalization over the convergence result in [8], where ∇mk(0) =
∇J(zk) is assumed instead of (4.3).

Theorem 4.3. Suppose Assumptions 4.1 hold. Then the iterates {zk} generated
by Algorithm 4.2 satisfy

lim inf
k→∞

‖∇mk(0)‖Z = lim inf
k→∞

‖∇J(zk)‖Z = 0.

The proof is given in the appendix. The same result holds for the classical trust-region
algorithm.

We stop the trust-region method if either ‖sk‖Z ≤ stol for a step tolerance stol
or ‖∇mk(0)‖Z < gtol for a gradient tolerance gtol. The inexact gradient condition
(4.3) implies ‖∇J(zk)‖Z ≤ (1 + ξ)‖∇mk(0)‖Z ≤ (1 + ξ)gtol.

4.2. The Gradient Condition and Adaptive Sparse Grids. To solve the
optimization problem (2.3), we define the models in Algorithm 4.2 as the stochastic
collocation approximations

mk(s)
def
= JQk(zk + s) =

1

2
EIk

[
‖Cu(zk + s)− w̄‖2W

]
+
α

2
‖zk + s‖2Z ,

where zk ∈ Z, Ik ⊂ NM+ is an admissible index set, NIk is the set of sparse-grid
collocation points, and Qk = |NIk |. The specific forms of ∇J(z) and ∇JIk(z) give
rise to the gradient error

‖∇J(z)−∇JIk(z)‖Z =
∥∥∥∑

i6∈Ik

(∆i1
1 ⊗ · · · ⊗∆iM

M )[B∗p]
∥∥∥
Z

and the inexact gradient condition, (4.3),∥∥∥∑
i6∈Ik

(∆i1
1 ⊗ · · · ⊗∆iM

M )[B∗p]
∥∥∥
Z

≤ ξmin
{∥∥∥αz +

∑
i∈Ik

(∆i1
1 ⊗ · · · ⊗∆iM

M )[B∗p]
∥∥∥
Z
,∆k−1

}
. (4.4)

We now define the set AM
def
=
{
I ⊂ NM : I is admissible

}
. To keep the number

of collocation points small and still satisfy (4.3), we ideally want to compute the index
set Ik as a solution of

min
I⊂AM

|NI | subject to ‖∇J(zk)−∇JI(zk)‖Z ≤ ξmin
{
‖∇JI(zk)‖Z ,∆k−1

}
, (4.5)

where |NI | denotes the number of collocation points associated with EI . The problem
(4.5) is combinatorial and expensive to solve. Instead of solving (4.4) exactly, we
employ Algorithm 3.2 with ℘( · ) = ‖ · ‖Z . We use the the global error indicator

η
def
=
∑

i∈N+(I)

‖(∆i1
1 ⊗ · · · ⊗∆iM

M )[B∗p]‖Z ≈
∑
i6∈I

‖(∆i1
1 ⊗ · · · ⊗∆iM

M )[B∗p]‖Z . (4.6)

Note that if there exists C > 0 such that
∑

i6∈I ‖(∆
i1
1 ⊗ · · · ⊗ ∆iM

M )[B∗p]‖Z ≤ Cη,
then (4.3) is satisfied, and global convergence is ensured. Such a result is problem-
dependent, however, and is not known for the examples in Section 5.

The new model mk+1 for our problem (2.3), (3.2) is chosen as follows.
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Algorithm 4.4. - Adaptive Stochastic Collocation Model Selection:
Given Ik ⊂ NM+ . Set A = N+(Ik), O = Ik, ri = (∆i1

1 ⊗ · · · ⊗ ∆iM
M )[B∗p]

and ηi = ‖ri‖Z for i ∈ A ∪ O, η =
∑

i∈A ηi, g = αz +
∑

i∈O ri, and TOL =
ξmin{‖g‖Z ,∆k−1}

while η > TOL do
Select i ∈ A corresponding to the largest ηi
Set A ← A \ {i} and O ← O ∪ {i}
Update the error indicator η ← η − ηi
for k=1,. . . ,M do

Set j = i + ek
if O ∪ {j} is admissible then

Set A ← A∪ {j}
Set rj = (∆j1

1 ⊗ · · · ⊗∆jM
M )[B∗p]

Set ηj = ‖rj‖Z
Update the gradient approximation g ← g + rj
Update the error indicator η ← η + ηi
Updated the stopping tolerance TOL = ξmin{‖g‖Z ,∆k−1}

end if
end for

end while

Set Ik+1 = A ∪O and mk+1(s) = JIk+1
(zk + s).

If the classical trust-region method is used, the tolerance in Algorithm 4.4 is set
to TOL = ξmin{‖g‖Z ,∆k}; see (4.3).

5. Numerical Results. In the following sections, we present the results of ap-
plying our adaptive framework to three numerical examples: optimal control of the 1D
diffusion equation with a discontinuous diffusion coefficient, optimal control of the
steady 1D Burgers equation, and optimal control of the 2D Helmholtz equation. First
we give a summary of the computational tools.

Algorithms. For the discontinuous diffusion and Burgers examples we employ
the classic trust-region algorithm (CTR) [21] and the retrospective trust-region al-
gorithm (RTR) [8] to guide adaptivity. We compare the results of CTR and RTR
with those of a Newton-conjugate gradient (CG) algorithm applied to a fixed high-
fidelity stochastic collocation discretization of the optimization problem [39]. For the
Helmholtz example, only the CTR algorithm is used, and no comparisons are made
to the high-fidelity Newton-CG algorithm because of its prohibitive computational
cost. In all examples, the stochastic models are computed by using Algorithm 4.4.
We use the Steihaug-Toint conjugate gradient method to approximate the solution of
the trust-region subproblem (4.1).

Implementations. The discontinuous diffusion example in Section 5.1 involves a
small spatial discretization and two random fields and is implemented in Matlab. In
contrast, in the Helmholtz example in Section 5.3, the size of the spatial discretization
and the large number of stochastic variables (up to 40) mandate a large-scale computa-
tional infrastructure and an efficient software implementation. The Burgers example
in Section 5.2, with a smaller spatial discretization and four random fields, uses the
same software base. Our software is built on a variety of Trilinos [35, 36] packages.
A crucial component is the discretization library Intrepid [10], which is responsible
for both the spatial finite element and the adaptive stochastic discretizations. Our
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optimization algorithms are implemented outside of Trilinos; in order to achieve full
generality, the implementations are based on abstractions of vector spaces, through
inheritance-based polymorphism. In other words, they are problem-independent.
Computations of problem-specific quantities, such as objective function values, gradi-
ents, and Hessian-vector products, are implemented by using two layers of parallelism,
through MPI groups. One layer of parallelism is responsible for the stochastic col-
location and requires minimal communication; the other, communication-intensive
layer handles distributed linear algebra and enables, for instance, an efficient parallel
multigrid solution of the forward and adjoint PDEs, whenever applicable.1

Computational Infrastructure. The numerical experiments for the Helmholtz ex-
ample in Section 5.3 are carried out on RedSky, an institutional computing cluster at
Sandia National Laboratories. The cluster is built on a 3D toroidal QDR InfiniBand
interconnect and provides 2,816 compute nodes, each with 8 cores, 2.93 GHz Nehalem
X5570 processors, and 12 GB RAM per compute node.

5.1. Optimal Control of an Elliptic Equation with Discontinuous Co-
efficient. The governing equation in our first example is a 1D elliptic equation with
a discontinuous diffusion coefficient. We assume that the interface of the discontinu-
ity is uncertain but that the values of the piecewise constant coefficient on the two
subdomains are known. This problem is motivated by, for example, subsurface flow
control through fractured media, in which the locations of the fractures are uncertain.

In this example, the spatial domain is D = (−1, 1) and the stochastic image
space is Γ = Γ1×Γ2 = [−0.1, 0.1]× [−0.5, 0.5], endowed with the uniform probability
density. Furthermore, the problem coefficients are defined as

ε(y, x) = εlχ(−1,y1)(x) + εrχ(y1,1)(x), with εl = 0.1, εr = 10, (5.1)

and f(y, x) = exp(−(x− y2)2). We consider the optimal control problem

min
z∈L2(D)

1

2

∫
Γ

ρ(y)

∫ 1

−1

(u(y, x; z)− 1)2dx dy +
α

2

∫ 1

−1

z(x)2dx,

where α = 10−4 and u(y; ·; z) ∈ H1
0 (D) solves

−∂x
(
ε(y, x)∂xu(y, x)

)
= f(y, x) + z(x), y ∈ Γ, x ∈ (−1, 1) (5.2a)

u(y,−1) = 0, u(y, 1) = 0 y ∈ Γ. (5.2b)

5.1.1. The Infinite-Dimensional Problem. To verify the assumptions in Sec-
tion 2, we first focus on the state equation (5.2). The numerical solution of a 2D elliptic
interface problem with fixed interface and random diffusivities on each subdomain is
considered in [71]. In our case the interface is random; therefore, the analysis is more
involved.

Using the Lax-Milgram lemma, we can show that given z ∈ L2(D), the weak form∫
Γ

ρ(y)

∫ 1

−1

ε(y, x)∂xu(y, x)∂xψ(y, x)− (f(y, x) + z(x))ψ(y, x) dx dy = 0,

1Since the multigrid solvers currently offered by the Trilinos package ML are unsuitable for the
Helmholtz equation and unnecessary for the 1D Burgers example, we use the sparse direct solver
KLU from the Trilinos package Amesos. This limits the exercised parallelism to the stochastic
collocation layer. We are documenting the simultaneous use of distributed stochastic collocation and
Trilinos/ML multigrid solvers in a related publication, in the context of the optimal control of 3D
Navier-Stokes equations.
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for all ψ ∈ L2
ρ(Γ, H

1
0 (D)), has a unique solution u(·; z) ∈ L2

ρ(Γ, H
1
0 (D)). Moreover,

for every y ∈ Γ∫ 1

−1

ε(y, x)∂xu(y, x)∂xψ(y, x)− (f(y, x) + z(x))ψ(x)dx = 0 ∀ψ ∈ H1
0 (D) (5.3)

has a unique solution u(y; z) ∈ H1
0 (D), and there exists a constant c > 0 independent

of y ∈ Γ and z such that ‖u(y; z)‖H1
0 (D) ≤ c(1 + ‖z‖L2(D)). However, analyzing the

smoothness properties of this solution with respect to y (more precisely, with respect
to the interface condition y1) is more involved.

The sensitivity of the solution u(y, ·; z) with respect to the interface location y1

is a function s(y, x) that is, in general, no longer continuous at the interface x = y1;
see [15]. Therefore the sensitivity s of the solution u(y, ·; z) is not an H1

0 (D) function,
and hence the standard setting above cannot be used.

To analyze the dependence of the solution of (5.2) on y1, we use a domain de-
composition formulation (see, e.g., [54]). We note that the solution of (5.2) satisfies
the interface condition

εl∂xu(y, x) = εr∂xu(y, x) at x = y1. (5.4)

Let vl ∈ H1(−1, y1), vr ∈ H1(y1, 1) be functions with vl(y1) = 1 = vr(y1) and
vl(−1) = 0 = vr(1). We write

u(y, x) =

{
ul(y, x) + d vl(x), x ∈ [−1, y1],
ur(y, x) + d vr(x), x ∈ [y1, 1],

with ul(y, ·) ∈ H1
0 (−1, y1), ur(y, ·) ∈ H1

0 (y1, 1), and d ∈ R. We insert the repre-
sentation into (5.2); multiply by the test functions φl ∈ H1

0 (−1, y1), φr ∈ H1
0 (y1, 1)

(extended by zero onto (−1, 1)); and integrate by parts. Next, we perform the variable
transformations

x =

{
−1 + (y1 + 1)ξ ∈ [−1, y1], for ξ ∈ [0, 1]

1 + (y1 − 1)ξ ∈ [y1, 1], for ξ ∈ [0, 1],

and we define

ûl(ξ) = ul(−1 + (y1 + 1)ξ), ûr(ξ) = ur(1 + (y1 − 1)ξ),

v̂l(ξ) = vl(−1 + (y1 + 1)ξ), v̂r(ξ) = vr(1 + (y1 − 1)ξ),

ẑl(ξ) = z(−1 + (y1 + 1)ξ), ẑr(ξ) = z(1 + (y1 − 1)ξ),

f̂l(y2, ξ) = f(y2,−1 + (y1 + 1)ξ), f̂r(y2, ξ) = f(y2, 1 + (y1 − 1)ξ).

The weak form of (5.2) is equivalent to the system

(1 + y1)−1

∫ 1

0

εl∂ξ
(
ûl + d v̂l

)
∂ξφdξ = (1 + y1)

∫ 1

0

(
f̂l(y2, ·) + ẑl

)
φdξ, (5.5a)

(1− y1)−1

∫ 1

0

εr∂ξ
(
ûr + d v̂r

)
∂ξψ dξ = (1− y1)

∫ 1

0

(
f̂r(y2, ·) + ẑr

)
ψ dξ, (5.5b)

(1 + y1)−1

∫ 1

0

εl∂ξ
(
ûl + d v̂l

)
∂ξ v̂l dξ + (1− y1)−1

∫ 1

0

εr∂ξ
(
ûr + d v̂r

)
∂ξ v̂r dξ

= (1 + y1)

∫ 1

0

(
f̂l(y2, ·) + ẑl

)
v̂l dξ + (1− y1)

∫ 1

0

(
f̂r(y2, ·) + ẑr

)
∂ξ v̂r dξ (5.5c)
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for all φ, ψ ∈ H1
0 (0, 1). We have omitted the argument (ξ) in Equations (5.5 a,b,c).

Equation (5.5c) is just a weak form of the interface condition (5.4). The left-hand
side in (5.5) defines a bounded linear operator

A(y1) =

 All(y1) 0 Ald(y1)
0 Arr(y1) Ard(y1)

Adl(y1) Adr(y1) Add(y1)

 (5.6)

from H1
0 (0, 1)×H1

0 (0, 1)×R to H−1(0, 1)×H−1(0, 1)×R. For example, All(y) and
Ald(y) are defined by

〈All(y1)ûl, φ〉H−1×H1
0

= (1 + y1)−1

∫ 1

0

εl∂ξûl(ξ)∂ξφ(ξ) dξ and

〈Ald(y1)d, φ〉H−1×H1
0

= (1 + y1)−1

∫ 1

0

εld ∂ξ v̂l(ξ)∂ξφ(ξ) dξ,

respectively. The other block operators are defined analogously. The right-hand side
in (5.5) leads to the operator

B(y1) =

 Bll(y1) 0
0 Brr(y1)

Bdl(y1) Bdl(y1)

 (5.7)

from L2(0, 1)× L2(0, 1) to H−1(0, 1)×H−1(0, 1)× R, and the functional

−b(y1, y2) =

 ll(y1, y2)
lr(y1, y2)
ld(y1, y2)

 ∈ H−1(0, 1)×H−1(0, 1)× R. (5.8)

For example,

〈Bll(y1)ẑl, φ〉H−1×H1
0

= −(1 + y1)

∫ 1

0

ẑl(ξ)φ(ξ)dξ and

Bdl(y1)ẑl = −(1 + y1)

∫ 1

0

ẑl(ξ)v̂l(ξ) dξ ∈ R.

The system (5.5) can now be written as

A(y1)

 ûl
ûr
d

+ B(y1)

(
ẑl
ẑr

)
+ b(y1, y2) = 0. (5.9)

We set V = H1
0 (0, 1)×H1

0 (0, 1)× R and Z = L2(0, 1)× L2(0, 1).
Using the relation between (5.3) and (5.9), one can show that for any y1 ∈ Γ1 the

linear operator (5.6) has a bounded inverse; that is, one can show the existence of a
constant c > 0 independent of y1 ∈ Γ1 such that

‖A(y1)−1‖L(V∗,V) ≤ c ∀ y1 ∈ Γ1.

See, for example, [54]. Therefore, for any y = (y1, y2) ∈ Γ, ẑl ∈ L2(0, 1), ẑ2 ∈ L2(0, 1)
the system (5.9) has a unique solution

(
ûl(z; y, ·), ûr(z; y, ·), d(z; y)

)
∈ H1

0 (0, 1) ×
H1

0 (0, 1)× R.
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From the definitions (5.6), (5.7), and (5.8) it follows immediately that y1 7→ A(y1),
y1 7→ B(y1), (y1, y2) 7→ b(y1, y2) are Fréchet differentiable. Therefore, the implicit
function theorem applied to (5.5) implies the Fréchet differentiability of Γ 3 y 7→(
ûl(z; y, ·), ûr(z; y, ·), d(z; y)

)
∈ H1

0 (0, 1)×H1
0 (0, 1)× R.

We have shown that Assumption 2.2 is satisfied for (5.9). Since the state equation
(5.9) is linear, the assumptions of Theorem 2.4 are satisfied, as is Assumption 2.5.

5.1.2. Discretization and Numerical Results. We discretize the state equa-
tion (5.5) using continuous piecewise linear finite elements. The finite-element mesh
used for the state variables is uniform on [−1, y1] with Nl = 64 intervals and is uni-
form on [y1, 1] with Nr = 64 intervals. The control variable is discretized on a uniform
mesh on [−1, 1] with N = 128 intervals. The resulting discretized system is identical
to the system obtained by applying continuous piecewise linear finite elements directly
to the weak form of (5.2), and this is how we implement it.

For a high-fidelity discretization in Γ, we use a level 7 isotropic Smolyak sparse
grid built on 1D Gauss-Patterson knots (Q = 1793).

The optimization results are depicted in Figure 5.1. The bottom images depict the
adapted sparse grid index set and corresponding sparse grid at the final optimization
iteration. The index set displays anisotropic behavior with regard to the random co-
efficients. In fact, considerable effort is required to resolve the discontinuous diffusion
coefficients (y1). Exploiting this anisotropy results in a significantly smaller adpated
sparse grid (Q = 417) and, hence, far fewer PDE solves. The top row depicts the
optimal controls for the stochastic problem and the deterministic substitute problem
in which y is replaced by E[y] = 0 (red dashed line). Also depicted is the expected
value of the state plus one and two standard deviation intervals.

The iteration history for the retrospective trust-region algorithm is listed in Ta-
ble 5.1, and an algorithm comparison is listed in Table 5.2. Table 5.1 highlights the
fact that most work in the trust-region algorithm is performed on small sparse grids
(Q ≤ 65), which results in about a five- to sixfold reduction in the number of PDE
solves when compared with the Newton-CG. In this case, all iterations for the retro-
spective trust-region as well as for the classical trust-region algorithm are successful,
and both algorithms generate the same trust-region radii ∆k. The retrospective trust-
region algorithm RTR requires the evaluation of the new model at the previous iterate,
mk+1(−sk), which is not required in the classical trust-region algorithm CTR. In this
example, the extra expense of evaluating mk+1(−sk) does not lead to larger trust-
region radii in the RTR algorithm compared with CTR. Therefore, in this example
RTR requires slightly more PDE solves than does CTR. See Table 5.2.

5.2. Optimal Control of Steady Burgers’ Equation. Our second example
is the optimal control of Burgers’ equation. In the deterministic case, this optimal
control problem is analyzed in [63], and it is a special case of deterministic flow control
problems discussed in [29].

Let D = (0, 1), α > 0, and w̄ ∈ L2(D) be given. Furthermore, define the random
coefficients

ν(y) = 10y1−2, f(y, x) =
y2

100
, d0(y) = 1 +

y3

1000
, and d1(y) =

y4

1000
,

where the random variables y = (y1, y2, y3, y4) are uniformly distributed in Γ =
[−1, 1]4. The optimal control problem is given by

min
1

2

∫
Γ

ρ(y)

∫ 1

0

(u(y, x; z)− w̄)2dxdy +
α

2

∫ 1

0

z2(x)dx, (5.10)
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Fig. 5.1: (Top left) Computed optimal control and mean value control (i.e., y replaced
by E[y] = 0, red dashed line). (Top right) Expected value of computed optimal state
with one and two standard deviation intervals added. (Bottom left) Generalized
sparse grid index set. The red blocks denote “active” indices and the blue blocks
denote “old” indices. The gray blocks denote the indices in the isotropic Smolyak
index set of level eight. (Bottom right) Collocation points corresponding to the index
set I = A ∪O.

where u(y, x; z) solves

−ν(y)∂xxu(y, x) + u(y, x)∂xu(y, x) = f(y, x) + z(x) y ∈ Γ, x ∈ (0, 1) (5.11a)

u(y, 0) = d0(y), u(y, 1) = d1(y) y ∈ Γ. (5.11b)

For y ∈ Γ, the random viscosity parameter is the interval ν(y) ∈ [νmin, νmax] ≡
[10−3, 10−1]. The value of ν(y) has a significant impact on the solution of the no-
control (z = 0) solution of Burgers’ equation.

5.2.1. The Infinite-Dimensional Problem. We can extend the problem set-
ting of deterministic optimal control problems governed by Burgers’ equation to fit
(5.10), (5.11) into the abstract setting of Section 2. We sketch the main steps, which
are based on [63] and [1, 32].

Using the construction in [62, L. 2.2, p. 71], we can show that there exists a func-
tion ud ∈ C0

ρ(Γ;H1(0, 1)) with ud(y, 0) = d0(y), ud(y, 1) = d1(y) and ‖ud(y, ·)‖L2(0,1) ≤
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k Ĵ(zk) ‖∇ĴI(zk)‖Z ‖sk‖Z ∆k CG Adaptive Q

0 5.660714e-01 2.559392e-01 - 1000 - - 1
1 2.183827e-01 1.789019e-02 153.89019 2500 5 2 9
2 1.455063e-01 9.838275e-04 47.32745 5000 4 1 17
3 1.265783e-01 4.369266e-05 90.04826 5000 10 2 33
4 1.263875e-01 2.692335e-06 11.51365 5000 11 3 65
5 1.263851e-01 1.906452e-07 2.77416 5000 16 4 161
6 1.263851e-01 2.410386e-08 0.18155 5000 15 2 417

Table 5.1: Iteration history of the retrospective trust-region algorithm applied to
Example 5.1. Here k is the number of trust-region iterations, Ĵ(zk) is the objective

function value, ‖∇ĴI(zk)‖Z is the model gradient norm value, ‖sk‖Z is the step size,
∆k is the trust-region radius, CG is the number of Steihaug-Toint CG iterations,
Adaptive is the number of sparse grid adaptation iterations, and Q is the number of
collocation points.

Algorithm Iter Adaptive PDE Q Ratio

Newton-CG 3 0 218,746 1,793 1.00
CTR 6 14 35,906 417 6.09
RTR 6 14 46,664 417 4.69

Table 5.2: Total number of outer iterations (Iter), adaptive steps (Adaptive), and
PDE solves (PDE), and final number of collocation points used for the model (Q) for
the three algorithms applied to Example 5.1. The fourth column contains the ratio
of the total number of PDE solves for Newton-CG versus the total number of PDE
solves for the other algorithms (Ratio).

νmin/2 for all y ∈ Γ. Moreover, Γ 3 y 7→ ud(y, ·) ∈ H1(0, 1) is continuously Fréchet
differentiable. The solution of (5.11) is u(y, x) = u0(y, x) + ud(y, x), where u0 solves
Burgers’ equation with homogeneous boundary conditions.

Let V = H1
0 (0, 1), Z = L2(0, 1), and for y ∈ Γ define A(y) ∈ L(V,V∗), B(y) ∈

L(Z,V∗), b(y) ∈ V∗ via (we use ′ for differentiation with respect to x)

〈A(y)u, φ〉V∗,V =

∫ 1

0

ν(y)u′(x)φ′(x) + ud(y, x)u′(x)φ(x) + u′d(y, x)u(x)φ(x) dx,

〈B(y)z, φ〉V∗,V = −
∫ 1

0

z(x)φ(x) dx,

〈b(y), φ〉V∗,V =

∫ 1

0

ν(y)u′d(y, x)φ′(x) + ud(y, x)u′d(y, x)φ(x)− f(x, y)φ(x) dx

for all u, φ ∈ V and all z ∈ Z, and define the nonlinear operator u 7→ N(u) ∈ V∗ by

〈N(u), φ〉V∗,V =

∫ 1

0

u′(x)u(x)φ(x) dx.

The weak solution u of (5.11) is u = u0 + ud, where u0 solves

A(y)u0(y) + N(u0(y)) + B(y)z + b(y) = 0 in V∗. (5.12)
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By applying [27, Th. 2.3, p. 291], [62, Th. 2.10, p. 74] we can show that there
exists at least one solution of (5.12) and for νmin > ν0(f, z, d1, d2) there exists a unique
solution u0(y; z) of (5.12). Moreover, there exists c > 0 independent of y ∈ Γ and
z ∈ Z such that

‖u0(y; z)‖H1
0 (0,1) ≤ c

(
‖z‖Z + 1

)
for all z ∈ Z and all y ∈ Γ.

The nonlinear operator V 3 u 7→ N(u) ∈ V∗ is Fréchet differentiable with deriva-
tive

〈N′(u)v, φ〉V∗,V =

∫ 1

0

(
u′(x)v(x) + v′(x)u(x)

)
φ(x) dx.

Using the techniques in [63, p. 63], we can show that for every y ∈ Γ and every
u ∈ H1

0 (0, 1) the operator A(y) + N′(u) is continuously invertible. For νmin > ν0(u),
there exists a constant c > 0 such that ‖(A(y) + N′(u))−1‖ ≤ c for all y ∈ Γ [32,
Thm. 3.3]. Moreover, for every u0 ∈ H1

0 (0, 1) and z ∈ L2(0, 1) the map Γ 3 y 7→
A(y)u0 +N(u0)+B(y)z+b(y) ∈ V∗ is continuously Fréchet differentiable. Therefore,
the implicit function theorem implies that u0(·; z) ∈ C1(Γ,V) for all z ∈ Z.

5.2.2. Discretization and Numerical Results. We discretized Burgers’ equa-
tion in space using continuous piecewise linear finite elements on a uniform mesh of
N = 2000 elements. Our high-fidelity stochastic collocation discretization uses a level
8 isotropic Smolyak sparse grid built on one-dimensional Clenshaw-Curtis interpola-
tion knots. To solve the discretized nonlinear system at each collocation point, we
use Newton’s method with a backtracking line search. For this example, α = 10−3

and w̄ ≡ 1. The results of the optimization are depicted in Figures 5.2 and 5.3. The
left image in Figure 5.2 highlights the difference between the optimal controls for the
stochastic problem (black) and the deterministic substitute problem with y replaced
by E[y] = 0 (red). The right image shows the expected value of the optimal state
with one and two standard deviations added and subtracted. Figure 5.3 displays the
final adapted sparse grid index set. Each image is the projection of the index set on
to the two-dimensional planes corresponding to the multi-indices (i1, i2), (i1, i3), and
(i1, i4). From these images, one can clearly see that the i1 direction is significantly
more important than the other directions.

Table 5.3 displays the iteration history for the retrospective trust-region algo-
rithm while Table 5.4 contains a comparison of Newton-CG, the classical trust-region
algorithm CTR, and the retrospective trust-region algorithm RTR. As in the previ-
ous example, applying the adaptive algorithm is significantly faster than using a fixed
stochastic collocation discretization. For both CTR and RTR, all iterations are suc-
cessful, and the same trust-region radii are generated. In this case, RTR requires more
PDE solves than does CTR, because RTR requires the evaluation of a new model at
the previous iterate, mk+1(−sk).

5.3. Optimal Control of Stochastic Helmholtz Equation. Our final exam-
ple is motivated by the optimal control of direct field acoustic testing (DFAT) [41].
An important objective in DFAT is to accurately shape sound pressure fields in a
region of interest by using acoustic sources, such as loudspeakers, located away from
and directed at the region of interest. When the refractive index of the medium in
the region of interest is random, we may assume that the governing physics are mod-
eled by the stochastic Helmholtz equation, as derived, for example, in [44, 31, 42].
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Fig. 5.2: (Left) The optimal control for the stochastic problem (black solid line) and
and mean value control (i.e. y replaced by E[y] = 0, red dashed line). (Right) The
expected value of the optimal state plus/minus one and two standard deviations.
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Fig. 5.3: Comparison of the adapted index set. The left figure compares dimension
1 with dimension 2, the middle figure compares dimension 1 with dimension 3, and
the right figure compares dimension 1 with dimension 4.

The stochasticity is often represented by a Karhunen-Loéve (KL) expansion of the
refractive index.

In [68], the authors present numerical methods for solving the Helmholtz equation
with stochastic boundary data. For optimal control problems governed by the deter-
ministic Helmholtz equation, see, for example, [9] and the references therein. The
optimal control of the stochastic Helmholtz equation is studied in [16] in the context
of controlling radiated engine noise. The solution of an inverse problem governed by
the Helmholtz equation is discussed, for example, in [19].

We consider an idealized DFAT example in two spatial dimensions, where the
domain is D = (−5, 5)2. The goal of this control problem is to match the wave
pressure u to a desired wave pressure w̄ ∈ L2(D;C) in the disk DR ⊂ D, DR :=
{x ∈ D : ‖x‖2 ≤ R}, with R ∈ (0, 5). For simplicity, rather than applying discrete
acoustic controls, we apply a distributed control in the annulus DC exterior to DR,
DC = {x ∈ D : R+ d ≤ ‖x‖2 ≤ R+ d+ w}, where d, w > 0 are such that R + d +
w < 5. Figure 5.4 depicts the experimental setup.



TRUST REGIONS AND ADAPTIVE STOCHASTIC COLLOCATION 21

k Ĵ(zk) ‖∇ĴI(zk)‖Z ‖sk‖Z ∆k CG Adaptive Q

0 8.310663e-03 9.848394e-03 - 1000 - - 1
1 6.777993e-03 1.231346e-03 0.5080726 2500 4 5 29
2 6.738253e-03 9.142368e-03 0.3478721 2500 7 0 29
3 6.334151e-03 1.068670e-03 0.2465402 5000 4 0 29
4 6.289515e-03 5.755139e-05 0.1471733 5000 7 3 51
5 6.288987e-03 3.462104e-06 0.0234743 5000 7 3 87
6 6.288986e-03 2.905453e-07 0.0014251 5000 5 5 137

Table 5.3: Iteration history of the retrospective trust-region algorithm applied to
Example 5.2. Here k is the iteration counter, Ĵ(zk) is the objective function value,

‖∇ĴI(zk)‖Z is the model gradient norm value, ‖sk‖Z is the step size, ∆k is the
trust-region radius, CG is the number of conjugate gradient iterations, Adaptive is
the number of sparse grid adaptation iterations, and Q is the number of collocation
points.

Algorithm Iter Adaptive PDE Q Ratio

Newton-CG 4 0 806,461 7,537 1.00
CTR 6 17 59,847 137 13.48
RTR 6 17 60,297 137 13.37

Table 5.4: The total number of outer iterations (Iter), adaptive steps (Adaptive), and
PDE solves (PDE) and final number of collocation points used for the model (Q) for
the three algorithms applied to Example 5.2. The fourth column contains the ratio
of the total number of PDE solves for Newton-CG versus the total number of PDE
solves for the other algorithms (Ratio).
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Fig. 5.4: Control region, DC , and region of interest, DR.

The optimal control problem is given by

min
z∈L2(D;C)

1

2

∫
Γ

ρ(y)

∫
DR

(u(z; y, x)−w̄(x))(u(z; y, x)− w̄(x))dxdy+
α

2

∫
Dc

z(x)z(x)dx,

(5.13)
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where u(z; y, ·) = u(y, ·) ∈ H1(D;C) for all y ∈ Γ = [−
√

3,
√

3]M solves

−∆u(y, x)− k2(1 + σε(y, x))2u(y, x) = z(x) ∀ (y, x) ∈ Γ×D (5.14)

with Robin boundary conditions

∂u

∂n
(y, x) = iku(y, x) ∀ (y, x) ∈ Γ× ∂D. (5.15)

Fig. 5.5: Real (left) and imaginary (right) parts of the desired state, w̄.

In (5.14), u is the wave pressure, k > 0 is the wave number, and (1 + σε) denotes
the stochastic refractive index [44, 31, 42]. Assuming that the physical domain is
sufficiently large, the Sommerfeld radiation condition holds. The boundary condi-
tions (5.15) are a first-order approximation of the Sommerfeld condition. The desired
complex-valued wave pressure is given by the plane-wave expression

w̄(x) = exp
(
i
(
(k cos θ)x1 + (k sin θ)x2

))
for a fixed angle of propagation θ. The real and imaginary components of the desired
wave pressure are plotted for θ = π/4 and k = 10 in Figure 5.5.

Similar to [42], we assume that the stochastic refractive index satisfies

σ � 1, E[ε(·, x)] = 0, and E[ε(·, x)ε(·, ζ)] = C(‖x− ζ‖) ,

where C denotes a covariance function. In [31], the covariance function C is chosen
to be exponential, Gaussian, or Kolmogorov. For this numerical example, we choose
C to be an instance of the Matérn covariance functions,

C(r) = Cν(r) :=
21−ν

Γ(ν)

(2
√
νr

`

)ν
Kν

(2
√
νr

`

)
.

Here, Γ(ν) is the gamma function, and Kν is the modified Bessel function of the
third kind [59]. The parameter ν > 0 controls the smoothness of the underlying
random process, and the parameter ` > 0 represents the correlation length of the
random process [59]. We have chosen the Matérn class because it contains both the
exponential (ν = 1

2 ) and squared exponential covariance functions (ν →∞).
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We approximate the refractive index using a truncated KL expansion of order M ,

ε(y, x) ≈
M∑
m=1

εm(x)ym.

The coefficients εm : D → R for m = 1, . . . ,M and ym are uncorrelated random
variables with zero mean and unit variance for m = 1, . . . ,M . We have chosen
ym for m = 1, . . . ,M to be independent and uniformly distributed on the interval
Γm = [−

√
3,
√

3].

5.3.1. The Infinite-Dimensional Problem. We will replace the complex func-
tions u = ur+iui with ur, ui ∈ H1(D) and z = zr+izi with zr, zi ∈ L2(D) with their
vector equivalents u = (ur, ui)

> ∈ H1(D)×H1(D) and z = (zr, zi)
> ∈ L2(D)×L2(D),

respectively. Therefore, we define V = H1(D)×H1(D) and Z = L2(D)×L2(D). Fur-
thermore, we define the (parametrized) linear operators A1(y) ∈ L(H1(D), H1(D)∗)
for y ∈ Γ, A2 ∈ L(H1(D), H1(D)∗), and B ∈ L(L2(D), H1(D)∗) by the relationships

〈A1(y)u, v〉H1(D)∗,H1(D) =

∫
D

∇u(x) · ∇v(x)− k2(1 + σε(y, x))2u(x)v(x)dx

〈A2u, v〉H1(D)∗,H1(D) = k

∫
∂D

u(x)v(x)dx

〈Bz, v〉H1(D)∗,H1(D) = −
∫
D

z(x)v(x)dx.

Substituting u = ur + iui and z = zr + izi into the weak form of (5.14), (5.15)
and factoring the real and imaginary parts, we obtain the linear system of equations(

A1(y) +A2 A1(y)−A2

−A1(y) +A2 A1(y) +A2

)(
ur(y)
ui(y)

)
+

(
B B
−B B

)(
zr
zi

)
= 0. (5.16)

This is an equation of the form A(y)u(y)+Bz = 0 with A(y) ∈ L(V,V∗) for all y ∈ Γ
and B ∈ L(Z,V∗), it fits the form of (2.2). Because A(y) is not coercive, we have not
yet been able to verify the assumptions of Section 2.

In this vector notation, we rewrite (5.13) as

min
z∈Z

1

2

∫
Γ

ρ(y)〈C(u(z; y)− v̄), u(z; y)− v̄〉V∗,V dy +
α

2
〈Rz, z〉Z∗,Z ,

where u(z; y) = (ur(y), ui(y))> ∈ V for all y ∈ Γ solves (5.16), v̄ = (<(w̄),=(w̄))> ∈
L2(D)× L2(D), C ∈ L(V,V∗) satisfies

〈Cu, v〉V∗,V =

∫
DR

ur(x)vr(x) + ui(x)vi(x) dx,

and R ∈ L(Z,Z∗) satisfies

〈Rz, w〉Z∗,Z =

∫
Dc

zr(x)wr(x) + zi(x)wi(x) dx .
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5.3.2. Discretization and Numerical Results. We discretize (5.16) in space
using continuous Q1 finite elements on a uniform mesh of 200×200 quadrilaterals. The
high-fidelity collocation discretization is built on 1D Clenshaw-Curtis interpolation
knots. The radius of the region of interest is R = 2, the distance to the control
annulus is d = 0.5, and the width of the control annulus is w = 0.1. Furthermore,
the wave number is k = 10, the acoustic perturbation parameter is σ = 0.1, the
control penalty parameter is α = 10−4, and the desired wave angle is θ = π/4. The
Matérn function parameters are ν = 11

2 and ` = 2. The number of random variables
is given by the order M of the KL expansion of the refractive index. Here we consider
high-dimensional stochastic problems, with M ∈ {20, 30, 40}.

k Ĵ(zk) ‖∇ĴI(zk)‖Z ‖sk‖Z ∆k CG Adaptive Q

0 5.948729e+00 1.014288e−01 - 1.00e+03 - - 1
1 7.936557e+00 1.012872e−01 1.06e+02 5.28e+01 4 6 57
2 5.740645e+00 3.158975e−02 5.28e+01 5.28e+01 1 4 91
3 5.349043e+00 2.899215e−03 3.41e+01 1.32e+02 3 16 197
4 5.338680e+00 2.193334e−03 4.23e+00 3.30e+02 3 2 209
5 5.335895e+00 1.250368e−04 2.56e+00 8.25e+02 2 25 367
6 5.335868e+00 5.244318e−05 4.79e−01 2.06e+03 4 18 537
7 5.335867e+00 5.273816e−06 6.50e−02 5.00e+03 2 37 829
8 5.335867e+00 6.432970e−07 2.99e−02 5.00e+03 5 59 1405

Table 5.5: Iteration history of the classical trust-region algorithm applied to the
Helmholtz example with M = 20. Here k is the iteration counter, Ĵ(zk) is the

objective function value, ‖∇ĴI(zk)‖Z is the model gradient norm value, ‖sk‖Z is
the step size, ∆k is the trust-region radius, CG is the number of conjugate gradient
iterations, Adaptive is the number of sparse grid adaptation iterations, and Q is the
number of collocation points.

Table 5.5 displays the iteration history of the classical trust-region algorithm for
a 20-dimensional stochastic problem, M = 20. Table 5.6 gives the computational cost
as the stochastic dimension increases from M = 20 to M = 40. We note that for
M = 20 the evaluation of the objective function is based on a high-fidelity collocation
grid comprising 120,401 nodes. In contrast, all other optimization quantities are eval-
uated on much smaller, adapted grids. The final (i.e., largest) adapted grid contains
only 1,405 nodes. In other words, the solution of the optimization problem is fully
dominated by the evaluation of the high-fidelity objective function. All remaining
optimization steps are essentially free.

Specifically, for the M = 20 case our algorithm reports 9 objective function eval-
uations, each with 120,401 forward-PDE solves, combining to 1,083,609 PDE solves.
This is 95% of the total of 1,136,784 PDE solves reported in Table 5.6. Similar ob-
servations hold for the cases M = 30 and M = 40. More fundamentally, Tables 5.5
and 5.6 demonstrate that the adaptive trust-region algorithm enables the solution
of high-dimensional stochastic PDE optimization problems. For this optimal control
example, this is predicated by the fast decay of the KL expansion of the random
refractive index, resulting in highly anisotropic adapted sparse grids. The adaptive
scheme efficiently detects dominant stochastic directions and reduces computational
cost.

Figures 5.6 and 5.7 show the optimization results. An important observation
from Figure 5.6 is that the computed optimal controls for the stochastic problem are
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M CTR It PDE Solves Hi-fi Grid Adpt Grid Nodes/Cores Time (h)

20 9 1,136,784 120,401 1,405 64 / 8 7.8
30 9 5,316,021 582,801 849 128 / 8 14.0
40 9 16,327,120 1,804,001 1,445 256 / 6 25.2

Table 5.6: Computational cost of the classical trust-region algorithm applied to the
Helmholtz example with M ∈ {20, 30, 40}. Here M is the stochastic dimension,
CTR It is the number of iterations of the classical trust-region algorithm, PDE Solves
is the total number of forward and adjoint PDE solves, Hi-fi Grid is the number of
collocation points in the high-fidelity stochastic grid, Adpt Grid is the number of
collocation points in the final adapted grid, nodes/cores are the numbers of compute
nodes and the numbers of cores per node used for each test case, and Time (h) is the
computational time for the trust-region algorithm, measured in hours.

Fig. 5.6: (Top) Optimal controls for the stochastic problem, including real (left) and
imaginary (right) components of the optimal solution. (Bottom) Optimal controls for
the deterministic substitute problem, where y is replaced by E[y] = 0, including real
(left) and imaginary (right) components of the solution. Note that the controls for
the stochastic problem are about three times smaller in magnitude than the controls
for the deterministic substitute problem.

significantly smaller in magnitude than the controls obtained by solving the deter-
ministic substitute problem, where E[y] = 0. We also note that the achieved value
of the stochastic objective function is approximately 5.3 in the first case and 7.9 in
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Fig. 5.7: (Top) Real (left) and imaginary (right) parts of the expected value of the
optimal state, restricted to the region of interest. (Middle) Real (left) and imaginary
(right) parts of the expected value of the optimal state, over the entire computational
domain. (Bottom) Real (left) and imaginary (right) parts of the standard deviation of
the optimal state. Note that the standard deviation is large in the top-right quadrant
of the domain. Accordingly, the match to the desired wave pressure is worse in this
region; see top row.

the second, a difference of 50%. Figure 5.7 demonstrates that the chosen acoustic
perturbation and Matérn covariance parameters yield a large amount of randomness
in the refraction index. Consequently, the expected value of the optimal state is not
a great match to the desired plane-wave profile given in Figure 5.5. The mismatch is
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particularly noticeable in the top-right quadrant.
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Fig. 5.8: (Left) Probability density function (PDF) of the quantity J (y, z) =
〈C(u(y; z) − v̄), u(y; z) − v̄〉V∗,V for the optimal control from the stochastic prob-
lem (blue line) and the optimal control from the deterministic substitute problem
(red line). (Right) Cumulative distribution function (CDF) of J (y, z). The PDF
and CDF plots clearly indicate that the optimal control for the stochastic problem
significantly reduces the variance associated with J (y, z).

Figure 5.8 shows the probability density function (PDF, left image) and the cumu-
lative distribution function (CDF, right image) of the quantity J (y, z) = 〈C(u(y; z)−
v̄), u(y; z)− v̄〉V∗,V . The blue lines correspond to the PDF and CDF of J (y, z) at the
optimal control for the stochastic optimization problem, and the red lines correspond
to the PDF and CDF of J (y, z) at the optimal control for the deterministic substitute
problem, where y ∈ Γ is replaced by E[y] = 0. The PDFs and CDFs are computed
by using 2,000 Monte Carlo samples of the stochastic Helmholtz equation. The CDFs
are computed as a sample average approximation to the true CDF, and the PDFs are
approximated by using kernel smoothing. These figures demonstrate that the optimal
control for the stochastic problem significantly reduces the variance associated with
J (y, z) when compared with the deterministic control. Therefore, the control for the
stochastic problem results in a more predictable mismatch between the solution to
stochastic Helmholtz, u(y; z), and the desired profile w̄.

6. Conclusions. We have introduced a trust-region algorithm with adaptive
sparse-grid collocation for the numerical solution of optimization problems governed
by PDEs with uncertain coefficients. The algorithm exploits anisotropy in the stochas-
tic nature of the PDE to adaptively build the stochastic collocation space. By en-
forcing a gradient consistency condition, the algorithm is provably globally first-order
convergent. Currently, the gradient consistency condition is implemented by using an
error indicator. Although there is no proof that the gradient consistency holds for
general PDE-constrained optimization problems, numerical results suggest that the
heuristic bounds presented in this paper work well for many problems. Furthermore,
the numerical results demonstrate a dramatic reduction in the number of PDE solves
required to obtain a minimizer when compared with the number of PDE solves re-
quired by a Newton conjugate gradient method applied to the high-fidelity sparse-grid
discretization.
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The computational work of our algorithm is dominated by the high-fidelity objec-
tive function evaluations. We may be able to further reduce the total number of PDE
solves by employing inexact objective-function evaluations. Trust-region algorithms
with inexact objective-function evaluations have been proposed in [17], [21, Sec. 10.6],
[72]. The approach [17], [21, Sec. 10.6] requires the error estimates that allow one to
reduce the error in function evaluations below a prescribed level. Therefore, asymp-
totic error estimates do not fit into the framework of [17], [21, Sec. 10.6]. In [72]
a slightly different consistency condition for inexact objective functions is proposed
in the context of adaptive mesh refinement for deterministic PDE-constrained opti-
mization problems. A single mesh is adapted to generate both the inexact objective
function as well as the model. For stochastic collocation discretizations, our initial
numerical results involving inexact objective functions suggests that the adaptive re-
finement of the objective function and its model should be decoupled. In particular,
joint refinement of the objective function and its model appears to result in a very
large sparse grid during the first few iterations. Therefore, it is not yet clear how
to extend the conditions and corresponding theory in [17], [21, Sec. 10.6], [72] to our
context.

We use the error indicator η in (4.6) to implement the inexact gradient condition
(4.3), (4.4). It is desirable to have an error estimator η ≥ C

∑
i6∈I ‖(∆

i1
1 ⊗ · · · ⊗

∆iM
M )[B∗p]‖Z , which would allow us to rigorously implement (4.3), (4.4). In the

context of solving single PDEs with random data, an adaptive scheme based on Taylor
approximations has been proposed in [20], and an a posteriori error estimator has been
proven. Use of this and other stochastic discretizations, such as stochastic Galerkin
[4] with the goal to derive an error estimator in the optimization context is another
avenue for possible research.
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[41] P. Larkin and M. Whalen, Direct, near field acoustic testing, SAE Technical Paper 1999–
01–5553, SAE International, 1999.

[42] G. D. Manolis and A. C. Bagtzoglou, A numerical comparative study of wave propagation
in inhomogeneous and random media, Computational Mechanics, 10 (1992), pp. 397–413.
10.1007/BF00363995.

[43] J. J. Moré, Recent developments in algorithms and software for trust region methods, in
Mathematical Programming, The State of the Art, A. Bachem, M. Grötschel, and B. Korte,
eds., Springer Verlag, Berlin, 1983, pp. 258–287.

[44] Jerome A. Neubert and John L. Lumley, Derivation of the stochastic helmholtz equation
for sound propagation in a turbulent fluid, J. Acoustical Society of America, 48 (1970),
pp. 1212–1218.

[45] F. Nobile, R. Tempone, and C. G. Webster, The analysis of a sparse grid stochastic collo-
cation method for partial differential equations with high-dimensional random input data,
Tech. Report SAND2007–8093, Sandia National Laboratories, 2007.

[46] , An anisotropic sparse grid stochastic collocation method for partial differential equa-
tions with random input data, SIAM J. Numer. Anal., 46 (2008), pp. 2411–2442.

[47] , A sparse grid stochastic collocation method for partial differential equations with ran-
dom input data, SIAM J. Numer. Anal., 46 (2008), pp. 2309–2345.

[48] E. Novak and K. Ritter, High-dimensional integration of smooth functions over cubes, Nu-
mer. Math., 75 (1996), pp. 79–97.

[49] , Simple cubature formulas with high polynomial exactness, Constr. Approx., 15 (1999),
pp. 499–522.
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Appendix A. Convergence Proof. In this section, we prove that, under As-
sumptions 4.1, Algorithm 4.2 converges to a first-order critical point. First, we prove
that the sequence of trust-region radii must converge to zero if the norm of the gra-
dients is bounded away from zero. Second, we show that under these assumptions
%k and %̃k+1 converge to one. These results then are combined to prove that Algo-
rithm 4.1 converges to a first-order critical point. Most results presented here follow
the standard convergence proof for the basic trust-region algorithm provided in Theo-
rem 4.10 in [43], although care must be taken to handle the retrospective trust-region
update.

Lemma A.1. Suppose there exists ε > 0 such that ‖∇mk(0)‖Z ≥ ε for k suffi-
ciently large. Then the sequence of trust-region radii, {∆k}, produced by Algorithm 4.2
satisfies

∞∑
k=1

∆k <∞.

Proof. First notice that the result of the theorem holds if there are only a finite
number of successful iterations because for sufficiently large k, ∆k+1 ≤ γ1∆k. Now,
if there is an infinite sequence of successful iterations {ki}, then for sufficiently large
i the fraction of Cauchy decrease condition (4.2) implies

J(zki)− J(zki+1
) ≥J(zk)− J(zk+1)

≥η0(mk(0)−mk(sk))

≥η0κ0‖∇mk(0)‖Z min

{
∆k,
‖∇mk(0)‖Z

βk

}
≥η0κ0∆kε.

This implies that
∑∞
i=1 ∆ki <∞. Furthermore, for every unsuccessful iteration

k 6∈ {ki}, the trust-region radius satisfies ∆k ≤ γ
k−kj
1 ∆kj where kj ∈ {ki} is the

largest index such that kj < k. The convergence of geometric series and the above
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result imply that

∑
k 6∈{ki}

∆k ≤
1

1− γ1

∞∑
i=1

∆ki and

∞∑
k=1

∆k ≤

(
1 +

1

1− γ1

) ∞∑
i=1

∆ki <∞.

This proves the desired result.
Lemma A.1 will be used to arrive at a contradiction. To obtain this contradiction,

we first must show that for k sufficiently large, Algorithm 4.2 produces a successful
step.

Lemma A.2. Suppose there exists ε > 0 such that ‖∇mk(0)‖Z ≥ ε for k suffi-
ciently large. Then, under Assumptions 4.1, the ratios, {%k}, converge to one.

Proof. By Taylor’s theorem, there exist θk and ηk on the line segment between
s = 0 and s = sk such that

aredk = 〈∇J(zk), sk〉Z +
1

2
〈∇2J(θk)sk, sk〉Z

predk = 〈∇mk(0), sk〉Z +
1

2
〈∇2mk(ηk)sk, sk〉Z .

These expansions and Assumptions 4.1 imply

|aredk − predk| ≤ ξ∆k−1∆k +
1

2
(κ1 + κ2 − 1)∆2

k.

Furthermore, the fraction of Cauchy decrease condition, (4.2), and the assumption
that ‖∇mk(0)‖Z ≥ ε imply that for sufficiently large k,

predk ≥ κ0‖∇mk(0)‖Z min
{

∆k,
‖∇mk(0)‖Z

βk

}
≥ κ0ε∆k.

Combining these inequalities gives

|%k − 1| ≤ εk =
ξ∆k−1 + 1

2 (κ1 + κ2 − 1)∆k

κ0ε

for sufficiently large k. The sequence {εk} converges to zero by Lemma A.1, therefore
proving the result.

Remark A.3. For the classic trust-region algorithm, ∆k−1 in the definition of εk
is replaced by ∆k and the same conclusion holds. In addition, the result of Lemma A.2
proves, for sufficiently large k, CTR produces a successful step and increases the trust-
region radius. This fact is sufficient to prove first order convergence of CTR.

In addition to achieving a successful step, we must prove that Algorithm 4.2 in-
creases the trust-region radius. This result is proved in a similar fashion to Lemma A.2.

Lemma A.4. Suppose there exists ε > 0 such that ‖∇mk(0)‖Z ≥ ε for k suffi-
ciently large. Then, under Assumptions 4.1, the ratios, {%̃k+1}, converge to one.

Proof. By Taylor’s theorem, there exists ηk+1 on the line segment between s = 0
and s = −sk such that

mk+1(−sk)−mk+1(0) = −〈∇mk+1(0), sk〉Z +
1

2
〈∇2mk+1(ηk+1)sk, sk〉Z .

This equality, the expansion of predk in the proof of Lemma A.2, and Assumption 4.1
imply

|predk − (mk+1(−sk)−mk+1(0))| ≤ ‖∇mk+1(0)−∇mk(0)‖Z∆k + (κ2 − 1)∆2
k.
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To bound this further, notice that

‖∇mk+1(0)−∇mk(0)‖Z ≤‖∇mk+1(0)−∇J(zk + sk)‖Z + ‖∇J(zk + sk)−∇J(zk)‖Z
+ ‖∇J(zk)−∇mk(0)‖Z . (A.1)

The first and third expressions on the right-hand side of (A.1) are bounded by using
(4.3), and the second expression is bounded using the differentiability of J , namely,

‖∇J(zk + sk)−∇J(zk)‖Z =
∥∥∥∫ 1

0

∇2J(zk + tsk)skdt
∥∥∥
Z
≤ κ1∆k.

This proves that

|predk − (mk+1(−sk)−mk+1(0))| ≤ (ξ∆k + ξ∆k−1 + κ1∆k)∆k + (κ2 − 1)∆2
k,

which implies the bounds

predk − ε̃k∆k ≤ mk+1(−sk)−mk+1(0) ≤ predk + ε̃k∆k

with ε̃k = (ξ∆k + ξ∆k−1 + κ1∆k + (κ2 − 1)∆k). The fraction of Cauchy decrease
condition and the assumption that ‖∇mk(0)‖Z ≥ ε imply

(mk+1(−sk)−mk+1(0)) ≥ (κ0ε− ε̃k)∆k. (A.2)

Since ε̃k converges to zero by Lemma A.1 and ∆k > 0 for all k, the right-hand side
of (A.2) is positive for sufficiently large k. Following the proof of Lemma A.2, these
bounds and the fraction of Cauchy decrease condition (4.2) imply

|%̃k+1 − 1| ≤
∣∣∣ aredk − predk
mk+1(−sk)−mk+1(0)

∣∣∣+
∣∣∣predk − (mk+1(−sk)−mk+1(0))

mk+1(−sk)−mk+1(0)

∣∣∣
≤ εk + ε̃k
κ0ε− ε̃k

→ 0 as k →∞.

This proves the desired result.
Combining these results gives the desired result of the section: Algorithm 4.2

converges to a first-order critical point.
Theorem A.5. Suppose Assumptions 4.1 hold. Then

lim inf
k→∞

‖∇mk(0)‖Z = lim inf
k→∞

‖∇J(zk)‖Z = 0.

Proof. For contradiction, suppose there exists ε > 0 such that ‖∇mk(0)‖Z ≥ ε.
By Lemma A.2, for k sufficiently large there is a successful step sk since %k converges to
one. By Lemma A.4, for k sufficiently large the trust-region radius must be increased
since %̃k+1 converges to one. This fact contradicts the result of Lemma A.1.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator
of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.


